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Injection of fast neutrals with a component of the beam velocity along the magnetic field B, results in a
plasma having a sheared mean velocity along B,. If this parallel velocity shear U’ and the density
inhomogeneity scale length L, are large enough so that U'|L, |/(r + 1) *s, > 1 then a parallel
Kelvin-Helmholtz instability is excited, where v, is the ion thermal speed and 7 is the electron
temperature/ion temperature. Magnetic shear stabilization requires a shear length L, comparable to or less
than |L , |, namely, 7L, /3(r + 1) < v, /U’ <|L,|/(r + 1) 2. For U'L,|/(+ + 1)"?v, < 1, however, this
parallel Kelvin-Helmholtz instability is stabilized and only drift wave instabilities can be excited. For 7 = 1
and (M /m)'"? = 43, the first of these drift wave instabilities is unstable for U'/Q, > 1724(L, /[ Lg)* 2
provided |L, /L,| < g; /30[L, |, while the second is stable for U'/§}, < 136g, /|L,| provided IL, /L] > 600
and U'/Qy < 1, where a; and Q, are the ion gyration radius and frequency.

INTRODUCTION

The injection of fast neutral atoms is presently being
investigated as a means of heating toroidal plasmas.
Typically, the neutral beam will be injected with a
component of its velocity along the magnetic field By,
and after injection the neutral beam will be ionized,
largely by charge exchange. If injection is at or below
some critical velocity approximately equal to the elec-
tron thermal speed times the cube root of the ratio of
the electron upon the ion mass, the energy of these
fast beam ions will be collisionally transferred to the
plasma ions; otherwise, the beam ions are first slowed
down to this critical velocity by the drag of the plasma
electrons. In addition to this energy transfer or heat-
ing, the momentum of the beam is transferred to the
plasma. Consequently, during the time it takes the
beam and plasma ions to become indistinguishable, a
mean velocity along the magnetic field is setup which
differs on adjacent magnetic surfaces because the num-
ber of ionizations per second will vary along the path
of the neutral beam. This parallel sheared velocity due
to the thermalized beam particles requires a non-
equilibrium distribution function, and therefore repre-
sents a source of free energy which can drive instabili-
ties. The second hump in the distribution function due
to beam particles that have not yet been thermalized
can also drive instabilities, but these explicitly beam
driven instabilities will not be considered. For more
information on the neutral beam injection process and
on these explicitly beam driven instabilities, Stix!?
should be consulted.

Fluid treatments of the parallel sheared velocity
driven Kelvin-Helmholtz instability in a plasma sup-
porting a density gradient and immersed in a uniform
magnetic field have been previously given by D’Angelo?
and more recently by Dobrowolny,! who also included
finite B=particle pressure/magnetic pressure effects.
Fluid descriptions, however, cannot properly treat the
damping due to the resonant ions which becomes im-

portant when the electron temperature 7. becomes
comparable to or less than the ion temperature T;. As
a result a kinetic treatment is desirable. Smith and
Von Goeler’ have attempted such a treatment numer-
ically, but have only considered 7T,=T; and did not
consider sheared magnetic fields. In this paper a kinetic
treatment is presented which analytically includes the
effects of the resonant ions, arbitrary T,/T;, and mag-
netic shear, on the parallel Kelvin~Helmholtz insta-
bility. In addition, the effects of the parallel velocity
shear on the stability of drift waves in a sheared
magnetic field is treated. The calculation is performed
in a slab geometry in which By= By(8+9x/L,) and U’x
is the sheared component of the mean velocity along
By. The density gradient which gives rise to the dia-
magnetic drift velocities is taken to be in the x direction.
The ion and electron U’ are taken to be approximately
equal so that there is no appreciable net current due
to the U’. Furthermore, the Doppler shift due to any
constant velocity along B, due to the injection is as-
sumed to be negligible.

In the section that follows a simple physical picture
of the mechanisms which drive and damp the parallel
Kelvin-Helmholtz instability is presented. In the fol-
lowing two sections the equilibrium is discussed and
the Vlasov and Poisson equations are solved self-
consistently for a low-8 plasma in which U’ is much
less than the ion gyration frequency and the Doppler
shift due to U’ is small compared with the wave fre-
quency w of interest. In the subsequent three sections,
the local theory (L,—), the nonlocal corrections to
the parallel Kelvin—-Helmholtz instability, and the drift
wave instabilities are treated.

SIMPLE PHYSICAL PICTURE

In this section a simple physical picture is presented
of the mechanisms by which a velocity shear U’ can
result in instability and a density gradient N’ can lead
to stabilization. In this simple picture the magnetic
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F16. 1. Sketch of the assumed form of the perturbing electric field
E=F5+F.5

field By is taken to be constant, the ions are assumed
to have a temperature much less than that of the elec-
trons, T;<<T,, and the electrons are assumed to be in
equilibrium at any time, and at every point. Because
of this last assumption, the electrons are Maxwell-
Boltzmann so that for constant electron temperature
T. the E x By and pressure gradient drifts exactly cancel
for the electrons in the presence of any perturbing
electrostatic electric field E.

Taking By to be along the £ axis, the density N and
mean velocity along Bo, 2-U, are assumed to be func-
tions of x only such that d(2-U)/dx=U" and dN /dx=
N' are constant over the x distances of interest. In
addition, U’>0 and N'>0 may be assumed. If a per-
turbing field E= —i(k,§+4k.2)¢ having no x variation
is assumed as shown in Fig. 1, then the ions will try to
move along B, to neutralize the charge. As a result, they
will undergo a change in velocity 64,0 = — (e/M )ik 0ol
in a time 8¢, where e and M are the charge and mass of
the ions. Because of the E x B, drift of the ions, u.=
—ikypc/ By, and the velocity shear U'; however, at any
given x the ions whose velocities are increased (de-
creased) by 2-E are replaced by slower (faster) ions
from smaller (larger) x, provided k./k,>0 as shown
in Fig. 1. Therefore, during the time & the ions also
undergo an opposing change in velocity due to U’,
51, = — (u,00) U’. Consequently, the parallel Kelvin—
Helmholtz instability occurs when | 8%, | > | §u, V|,
that is, when U’/Q;>%./k,, where Q; is the ion gyration
frequency. Note that the k./k,<0 case is always stable
as 6#® is in the same direction as §u,. The preceding
picture for the parallel Kelvin-Helmholtz instability
is essentially the same as that first given by Rome
and Briggs.®

In order to understand the role of the density gradient
in stabilizing the parallel Kelvin-Helmholtz instability
it is convenient to consider the limit I'/Q;>>k./k,>0
in which the 2-E stabilizing force is negligible. In this
limit the growth rate ¥ of the Kelvin—Helmholtz in-
stability can be determined by noting that the diver-
gence in the ion velocity results in a density change
n® = — Niku,®8t, where u,® = — [ dtu, U'—u, U /.
Consequently, #® = — [Nik,u,® dt~c— Nik,u.? /v, and
from quasineutrality #® must equal the perturbed
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electron density Nep/KT,. As a result, the growth rate
v is given by v*=k.k,(KT./M)(U'/Q;), where K is
Boltzmann’s constant.

In estimating v, the density perturbation caused by
N’ has been neglected. Because of N’, however, the
ions which E x By drift to larger x are replaced by
fewer ions, and those that drift to smaller x are replaced
by more. The resulting perturbation in the ion density
in a time & is just on® = — (u,5{) N'. Setting n®=
—J dtu.N'~—u.N'/w equal to the perturbed electron
density Ned/KT. gives | w | kKT N /NMQ= | wx |,
where wy is the electron diamagnetic drift frequency.
Consequently, the time scale associated with the
changes in density due to N’ is just the time required
for the electrons, and therefore E, to “drift” a wave-
length 27k, 1. Referring to Fig. 1, this means that in a
time 2r | ws [ the pattern drifts a full wavelength in
the minus % direction. As a result, if E drifts a distance
wk, ™ in a time 7 |ws |~ short compared with the
growth time 5!, then the parallel Kelvin—-Helmholtz
instability will not occur because the ions moving along
By can no longer pile up appreciable amounts of posi-
tive charge before the diamagnetic drift of the electrons
will result in it being neutralized. For stability there-
fore, y2Kws? or U'/Q:< (B, KT,/k.MQ2) (N'/N)? is re-
quired. Note that the stabilization is independent of
the sign of N'. For N'<0, the electron diamagnetic
drift is in the plus § direction.

Although T .>>T'; has been assumed in the preceding
discussion, the mechanisms described are expected to
be qualitatively correct when the ion diamagnetic drift
becomes comparable to or greater than that of the
electrons and when resonant ion effects can no longer
be neglected, that is, for T, <T.

EQUILIBRIUM

For a collisionless, inhomogeneous, low-8 plasma
having a sheared mean particle velocity U(x) along
the sheared magnetic field Bo= Bo(24-jx/L,) the par-
ticle trajectories must satisfy the equations of motion
and initial conditions

dr’ , ,
— = =41 =
dr’ \E r'( )=T,
(D
av’
ar _]l;c vV xBo(s'), V(/=0=v,

where primes are used to denote trajectory variables.
The constants ¢, e, and M are the speed of light, charge,
and mass; and species subscripts are suppressed. Equa-
tions (1) yield conservation of energy and two compo-
nents of canonical momentum;

&'+ (v)//Q) =2+ (v,/Q),
(2)

|V = [y p=a,

' 2
! ﬁ [ Yy
v W L

2
Dy

2L,

x
= 'vz+ Z vy"{"
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where Q= eBy/Mc and L, is the magnetic shear length.
As a function of the constants of the motion (2), the
equilibrium distribution function fo having the appro-
priate sheared mean particle velocity along By and the
desired density inhomogenity is

No {[x-l- (v,/) ]
exp

(270r2) 2 L.
( A RaTY; >[“+ v (x+ %)]

2

+ [u+ v (x+ %)] ](zwz)-l} .
The 2 and & axes are chosen such that By>0 and U’>0,
respectively. The plane x=0 corresponds to a rational
surface and is located at the point at which the wave
vector k under consideration has no component along
B,. The quantities L,, sr=(KT/M)12, and N, are the
scale length of the density inhomogenity, the thermal
speed of particles of mass M at temperature 7, and
the particle density at x=0.

The current that results in the magnetic shear is
assumed to be due to the electron # along. Conse-
quently, #=0 for the ions. The ion and electron U’ are
assumed to be approximately equal so that currents
due to the sheared part of the particle mean velocities,
as well as diamagnetic currents, are assumed small
compared with | eNu |.

The desired first two moments of f,,

N=N(x) =N, exp{z/L,)

fo=

and

U=U(x) = (vr*/QLa) §+ (u+ U'x) [2+ (x/ L) ],
are obtained provided

U<, |z/L |1,

(3)

a/ | L 1K1, |u] /vakd.

(4)

In Eq. (4), vo=(KT./m)" and v;=(KT;/M)?, are
the electron and jon thermal speeds, and a;=v,/Q;, is
the ion gyroradius with @;=eB,/Mc. In addition to
giving (3), fo is constructed so that neglecting gyro-
radius corrections, ¢:/ | x| <1, and using (4) results
in the drifting Maxwellian

fom N (_ "’z2+7’u2+[vz—(u+U’x)]z>l “

(2mvp?)¥2 20

LINEARIZED EQUATIONS

In terms of the trajectory variables of (1), the solu-
tion of the Vlasov equation for the perturbed distribu-
tion function f can be cast into the form

f=f(r,v,0)= ;44 f_ " e, rH=1) -V, fola, V).

Using the constants of the motion (2) and v'- V'®(r’,

1721

7+1) = d®/dr— d®/dr, neglecting gyroradius corrections
and using inequalities (4), and seeking solutions of the
form exp(iky—iwt) gives

f=f(x: kv, 0) =— (e/KT)fO{‘t'(x: k, w)

—I—i[w—wd— k| | (u+ U’x)

—(kU'/Q) (v.—u—U'x) U (x, k, )}, (6)

where the x=0 plane is located such that k-By(x=0)
0, and the parallel wave vector k|, is defined as &y
kx/L,. In Eq. (6)

0
I=1I(x, k, w)= / drd (s, k, w)

Xexp[—iwr+ik(y'—)], (7)

wa= kvr?/QLy, is the particle diamagnetic drift frequency,
and fo as given by (5) may be employed. Note that
there is a component of the wave vector kj along B,
for all x except £=0 so that the parallel Kelvin-Helm-
holtz instability may be excited.

For potentials & that vary slowly compared with the
particle gyroradius, ®(«’, 2, w) =®(2’) may be Taylor
expanded about «. In addition, the solutions of (1),

&' — 2= (v./Q) [sin (Qr— ) +sing ],
¥ —y= (v2/Q)[cos(Qr— ) —cosp ]+ (xv.7/L,),
U=Vl COSQ, 2, =101 sing,
the generating function

2 Ji(n) explila+til(n/2)],

and the recurrence relations for the Bessel functions
Ji(n) may be employed in carrying out the r integra-
tion to obtain

exp(én cosa) =

1= 5 (i )expm)

IAY:
[fb—l— (—— singp— E) e

P 2. V.2 P
_ - e o —_ 2 —_—
+ <k2 7o Smet g sin ‘p) ax2]

va [ @ kvi\ | 9°®
—— =T |—. (8
2% [am '( Q )] ax"’} ®)
In order to obtain the differential equation for @,
J @ f=[ de dvs dvvs f must be evaluated. Making the

additional assumptions | w | /Q: and k22,21 the ¢ inte-
gration is performed first. The integrations over ». and

X
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finally, v, then result in

D—wg kU’
X (rI>+ { - nZ(n) — m[1+nz(n)]]

kszZ ‘I)TZ 9P
X [(1— )t 9_3“]) ©
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where a=w—Fk) (#+U’'x) and 9=a&/ |k |vr. In Eq.
(9), Z(n) is the plasma dispersion function which is
defined here as

exp(—3£)

20 = ey [~ a2

for Imy>0, and must be analytically continued to
Imy<0.7

For a two-component electron-ion plasma composed
of singly charged ions, substituting e @®f into Poisson’s
equation results in the differential equation

%P
at S+ ((1~k2aﬁ)+

where {=w/ |k |vi, provided the Debye length is
small compared with the ion gyroradius. In obtaining
Eq. (10) electron terms smaller than the corresponding
ion terms by the ratio of the electron mass m to the
ion mass M are neglected, the Doppler shifts due to
U’ are assumed small enough so that

Ik”U’x]<< |w| and

(11)

and the Doppler shift due to u is neglected compared
with w. In writing Eq. (10) the definitions

r=T./T; and ws=—kv2/Q.L,=—7kaw;/L,

IO)*I/T,

(12)

are employed, where Q.= eBo/mc.

In order to proceed with the analysis conveniently,
it is desirable to have an approximation for Z({) which
is valid in the drift limit k) %3<K | o?f | <<k 202 and
which also approximates Z({) fairly well for || =
| w/kyvi| S1. Letting {=14¢ for convenience, such an
approximation can be formed by the ratio of two poly-
nomials

{LGm) )/ () P48 (13)

provided Im¢>0 (Imw>0), and | Ref [ >> | Im¢ |
(| Rew |>> | Imw | ) when | ¢ |*= | w/kj2: 2>1. In ad-
dition to reproducing the first two terms of the asymp-
totic expansion of Z for large argument, the approxima-
tion (13) gives correctly the first term of the power
series expansion of Z for small argument.

Substituting (13) into (10), defining w=14y, and
neglecting resonant electron effects to lowest sig-
nificant order in the small parameter |[w—ws—
Ey{u+U'x) )/ kv, |, results in

2,

a*P
a— —V{(xz,v)P=0,

dx? (14)

where

V=V(x, v)=(LtPx+Ax?)/(TERx) (15)

with
T=r1+(ws/ty),  R=(kvi/yvL)[T(Gm)P£W],
A= (r+1) (kvi/vL)?,  L=1—(ws/iv)+Tka?,
P=(kvi/yL)[L(3m) PF W (1—k%?) ],

(r+ 1)+ {[wo—wx—ky (ut+-U'n) 1/ | kiy | v} Z(w/ | Ry, Im)) =0
(r4aw/w)EZ(§) — (vhU' [k Q) [1+¢Z(8) ] ’

(10)

and
W=rkaiU'/'y.

In the preceding, £ may be taken to be positive for un-
stable solutions (Imw>0) as can be seen by letting
k——k and w——w™* in the complex conjugate of (10).
In addition, L, may be taken to be positive when
resonant electron effects are negligible as L,——1L,
leaves Eq. (10) unchanged provided x——ux. As a re-
sult, | & | = (k/Ls) | x| ==xkx/L, is employed so that
the upper sign in the preceding expressions is for >0
while the lower is for x<0.

STABILITY ANALYSIS: LOCAL THEORY

In the limit of large L,, the local approximation to
the differential equation (14) may be found. This local
dispersion equation is recovered by solving 4V /dx=0
for the extremal point xo. Then, V(x, v) is expanded
about wp and terms quadratic in (x—uxo) are retained.
The resulting differential equation for Weber functions
has a solution going to zero for large | x—xo | provided
an eigenvalue equation is satisfied. As will be shown
in subsequent sections, this eigenvalue equation reduces
to the local dispersion equation V (%, v) =0 for large
enough L,.

In order to proceed analytically only the two limits
W/T | <1 and | W/T | >>1 will be considered. In the
W/T | <1 limit xo= (vL,/kv:)[W/2T—0(W?*/8T?)]
and the local dispersion equation V¥ (#o, ¥) =0 may be
written as

1— =4 (T+ “’*) kzaﬁ]
| w

w

W2 20)* W
+ :1?2 [1—1‘— _w_ +2 (T+ :) k2di2] =0. (16)

Because | W/T | «1, the two terms in square brackets
in (16) can balance only if the first bracket is much
smaller than the second in magnitude. Recalling that
k2021, the only two possibilities that exist are w Jwx
and ©>1, | ws/w |. Considering this 5>1 limit first and
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using k%<1 gives
11— (UL,2/rv2) (147ka?) 2
2[14rk%2] '

Consequently, stability requires
U /< (aif | La | )[r/(14+7k?%a ) JV2.

As a result, even in the presence of a sheared By a den-
sity gradient tends to stabilize the parallel Kelvin-
Helmholtz instability when ©>1 and | we/w |. When
(U2L2/m02)>1, Eq. (17) reduces to

y=34"%U"a;= | wxU' Lo/ 27 | 3% | 0x | (18)

so that the parallel Kelvin-Helmholtz instability is
quite strong compared with drift wave instabilities. In
this large U’ limit, inequalities (11) impose on L, the
restriction (U’/Q;)*&272a,/ L,.

As mentioned previously, the only other limit in which
a solution to (16) exists is wwys. Taking w=wx(1+€)
with | € | <1 gives the dispersion relation for drift waves
corrected to include the effect of the velocity shear,

w=wp{l— (r+ 1) e 2—[UL2/4(++ 1))}, (19)

The interesting feature of (19) is that the term in U’
acts to lower w from ws and so might be expected to
result in an instability in a manner similar to that of
the %22, This drift mode will be considered in more
detail in a later section.

For |W/T |>[2+4 (x/2)¥?], xo=(vL/kv:) {£1—
(T/WY[1+3(x/2)V]+0(T*/W*)} and the local dis-
persion equation ¥ (x,, v) =0 reduces to

W= Wy

(17)

+W{1—ka2) =[243m)V](++1). (20)
As a result,
y=+1kU'a;(1—k%a?) /[2+ Gr) V2] (r+1)
+7hU a:/3(r+1) =F U L/3(r+1)v..  (21)

In this | W/T | >>1 limit, therefore, the parallel Kelvin—
Helmbholtz instability persists for the x>0 extremum,
but it appears that it can no longer be stabilized by

simply decreasing | L, | or increasing 7. However, using
(20) in | W/T | >[2+ (x/2)V2]~23 gives

C(r/r+1)24 (30,/U'L,) K1,

Consequently, the dispersion equation (20), and there-
fore the root given by (21), is valid only if » <1 and
U’ | L, | >3v.. By using these two inequalities the in-
stability (21) is again found to have a growth rate
large compared with |wx |, [ v |> | ws | /(+1). Fur-
thermore, because of these two inequalities, it is not
surprising that L, can only result in a higher order
correction to v in this | W/T | >>1 limit. In addition,
note that inequalities (11) impose on L, the restriction
(U'/Q:)23(r+1) a/7L,.

Consistent with the preceding | W/T | >>1 limit and
the two cases of the | W/T | <1 limit, the parallel
Kelvin—Helmholtz instability of (17) or (18) and (21)

1723

may be stabilized by decreasing | L, | until
U'| L, | /(r+1)V2,< 1, (22)

for arbitrary . When (22) is satisfied, the parallel
Kelvin—Helmholtz instability goes over into a drift
wave (19).

By replacing k| with £, the local theory in the ab-
sence of magnetic shear can be examined. Analyzing
this By=const case for k./k>0 results in the stability

condition
_(i’ < fflir-i-l " rhia? ] ,

& kLT 4k 2,2

consistent with the limits analogous to those treated
in the preceding. The k./k<0 case is always stable.
The preceding is in agreement with the two-fluid results
of D’Angelo® and Dobrowolny* in the 72>1 limit, and
with the results of Smith and von Goeler’ for r=1.
Within constants, it also agrees with the results of the
simple physical picture presented in an earlier section.
It should be pointed out that a two-fluid treatment is
equivalent to employing the equations of magneto-
hydrodynamic with cE+U xBy= —cVp/eN+J xB/eN
rather than ¢cE+U xBy=0, where p, J, N, and U are
the pressure of the electrons, the current density, the
particle density, and the mean velocity of the ions,
respectively.

STABILITY ANALYSIS: NONLOCAL THEORY

So far only the local approximation to the differen-
tial equation (14) has been considered and in this small
magnetic shear limit a density gradient is found to be
stabilizing. It is, however, of interest to determine if
the nonlocal behavior caused by larger amounts of
magnetic shear can stabilize the purely growing parallel
velocity shear driven Kelvin—Helmholtz instability in
the absence of a significant density gradient.

For | L, | >, ka0, and v pure real and >0, an
examination of (10) or (15) shows that V(x, v) either
has or does not have a pole at some x<0, depending
upon whether W/r is greater or less than a number
approximately equal to one, respectively.

When | W/r | <2, V(x, v) can be expanded about
xo. Retaining up to terms quadratic in (x—x¢), Eq.
(14) becomes the differential equation for the Weber
functions D,,

2

D
22 —De(a—sgTe=0,

23
v (23)
where
A=V (%0, v)/al= a2 (71— W?/4r?)
and
1 #V(x,v)
2 22OV = (/v L)
i N (k2i/vLa)

Because | W/t | <2, for a local well about xq, that is,
for V{xy, v) <0, >1 is required. The solution satisfy-
ing (23) and going to zero for large | x| at any fixed
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Fic. 2. Plot of V(x, v) vs x for | W |>>r+1 and + real and >0,
in the | L, {—« and k%,—0 limit.

time { is
&= H,{[ (&) u(x—=x0)"]"*} exp[ (F)3u(x—20)?]

= 2D, {[() du(x—a)? T} (24)
provided the eigenvalue equation
AM£) (28+1)u=0 (25)

is satisfied. In Egs. (24) and (23) the upper and lower
signs in the parenthesis are to be used when Rey>0
and Reu<0, respectively; and H, is the snth Hermite
polynomial. For Rey=Imw>0, Reg>0 so the upper
signs must be used and (253) gives

=— (2n+1) (vkaw/2L,)
+{[(2n+1) (rkawi/2L,) F+irka U2 (26)

When 2(U’L,) 2> (2n+1)2rv.2, (26) reduces to the local
result (18). For substantial stabilization (U’L,)%*&
2(2n+41)%rv2 is required, in which case (26) reduces to

y= (3% a)[U'L/2(2n+1)r42,].  (27)

From (W/27)2<1 and (U’'L,)%<<2(2n+1)%m2, how-
ever, (27) holds only for L, such that

1K[U'L/2(2n+1) v, << /4.

As a result, only for very large r can the ©=>1 root
(18) be substantially stabilized by magnetic shear in
this | W/7 | <2 limit. For smaller values of U’L,/v;,
the inequality is reversed so that the | W/r | >>1 limit
must be considered.

Because of the pole at some x<0, V(z, ¥) in the
| W/r | >>1 limit has a form somewhat more compli-
cated than the simple well of the W/r<1 limit. For v
pure real and >0, the form of V(x, v) is as shown in
Fig. 2, where the plot is obtained by the following
considerations. In order to have a local well for x>0,
that is, in order for V(xy=vL,/kv., v)<0, |W|>
(w/2)"2 is required. Consequently, using | W | >7+1
in Eq. (15) results in

ka-x kv;x 2 Wk'v,-x -1
V_[l_ YL, +(r+1) (‘YLa) ](T+ vL, ) ’(28)
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which has the two simpler limits
V=[(+Dkvx/WyL,]— 1= (x/x) —1

for || > |yL/kv;| (29)
and
yo 1= Whva/yL) 1= (x/m)
r+ (Whvir/vL)  v(1—x/x,)
for | x| < ’ZL (30)

From the form of ¥ as shown in Fig. 2, a physically
acceptable solution for Rey> 0 is one which decays for
x> 1z, oscillates between x; and x, and leaks through
the “barrier” between 2, and x, to give an oscillatory
solution for x<x, which goes to zero as x—— « . Sub-
ject to such behavior at infinity, the differential equa-
tion (14) can be solved in the x> |vyL,/kv;| and
«< | yL,/kv; | limits in which (29) and (30) are appli-
cable. An eigenvalue equation can then be found by
using the WKB solution in the region about ax=
| ¥L,/kv; | to match these solutions. The complete deri-
vation of the eigenvalue equation is presented in the
appendix. Also contained in the appendix is an analy-
sis of the eigenvalue equation which shows that the
amount of magnetic shear necessary for stabilization
is given approximately by

UL/ (r4+1)0,< &, (31)

independent of any restriction on the value of r com-
pared to one. As a result, magnetic shear stabilizes the
parallel Kelvin-Helmholtz instability when (31) is
satisfied, although for the case of very large 7, stabiliza-
tion via (26) first occurs. Note that (31) is onty valid
if (11) is satisfied with [x| < | x|, that is, if 1>
| By (22) U'tn/y | =2 (BU /Q:) [7U' Lo/ (r+1) ;).

In order for the local solution to be valid, the barrier
width | x;—#, | of Fig. 2 must be large compared with
the decay length | (2u)~2 | implied by (23) and (24).
For the local solution (21), this gives approximately
7U'L>8(r+1)v;, in agreement with the result found
in the appendix.

STABILITY ANALYSIS: DRIFT LIMIT

If L, is small enough, thatis,if U’ | L, | /(r+1)¥2,;<
1, then the parallel Kelvin—Helmholtz instability of
(17), (18), or (21) is stabilized by the density gradient.
In this limit, however, drift waves, (19), can be un-
stable. The balancing in Eq. (10) of the nonlocal be-
havior introduced by the magnetic shear and the drift
wave resonance with the electrons, as represented by
the imaginary part of the electron Z function, deter-
mine the stability of the drift mode.

To determine the nonlocal corrections, V(x, v) is
expanded about xp= (yL./kv,)[W/2T—0(W?/87?)]
and terms up to these quadratic in (x—xo) are retained.
Then, V(x,, ¥) is expanded about the frequency
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Yo=—1wy given by (19) and satisfying V (xo, vo) =0.
Only the leading non-zero term is retained. The result
of these operations is again of the form of (23) but

with ,

, 1 #V(x,v) _ ( r+1 )(_k_ﬂ_)"’
k= 2g? ar* 20,70 + (w*/‘*’) wLs/ |4 mo

L,
- (a-z'rL) (32)
and
= 5_7 AV (o, ¥) 15y
al Oy v 02(r+H1)ws”

In order for the solution (24) of Eq. (23) to go to zero
as | x | — for an unstable eigenvalue (Imw>0) and
for the A and u? of (32), the eigenvalue equation (25)
must be satisfied with (2:)Reu(wwe+i Imw)>0.
Consequently, the upper or lower signs in the paren-
thesis of (24) and (25) must be employed depending
upon whether L,>0 or <0, with the result that (25)
gives

5'7=_(2”+1)[(7+1)/T] ' Ln‘-'-’*/Lc !y (33)

where both signs of L, must be considered because the
electron Z function is to be retained. Note that if
V{xo, v) had not been expanded about v, then A=
V(xo, v)/e2, and from (10) the terms in V(xy, v) are
of order one. As a result, (25) then gives the local result
V(x0, %) =0 as being valid when a;2>(24+1) | u|
or TL>(2n+1) | L, |.

The lowest significant order contribution from the
electron Z function that appears in (10) is its residue.
Retention of this residue in the drift limit results in a
differential equation of the form

»d

52 _[X+ﬂ2(x_x0)z+'iy(x) 'Y) ]$=0, (34)
where
iy (WK U'x) —wa?
=G S s () 9

In Eq. (34), the carats on & and X are to distinguish
them from the ® and A of Eqs. (23) and (32) which
do not include the effect of V. Letting the prefix A indi-
cate the perturbation in a quantity due to retaining ¥,
then &=&+A®, v=vyo+y+Ay, A=[(bv+A47)/a2]X
[(aV/8v) | vo]; and Egs. (23), (32), and (34) may
be used to obtain

sy=—o2(r+Dan [ du ¥ / [ e, o)

where the path of integration is chosen to provide con-
vergence for an unstable eigenvalue. In writing (35)
the contribution arising from resonant ions is neglected
compared with that from the electrons because for the
x of interest ws?/k) % 2>1, and this appears in the ex-
ponential of ion residue terms. Furthermore, kju is
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assumed to be small enough as to be negligible com-
pared with w—ws and & \U'x in ¥, as the k;u term is
considered by Rosenbluth and Liu.?

The effect of the (r+1)#%2 term of Eq. (19) on
stability has been considered by Pearlstein and Berk,?
and Liu ef a/.1° Consequently, only the long wavelength
limit in which (r+1)%%? is small compared with
(U'L,)?%/4(7+1) 22 will be considered.

In order to evaluate the upper integral of (36) ana-
lytically, it is necessary to consider the limits in which
the localization width of &, |xr| = | (2/w)¥2|, is
either large or small compared with the shift ||,
and is large compared with x,, where x, is defined by
| By (2e)ve/wn | =1.

Using (36) to evaluate ReAy for | x/x2 | <1 gives,
for =0 and 1,

mL. 1/2
RCA'Y = l W | (MLn>
U2L,2 ML\ U
In ’ ( ) —, n=0
4(7+ 1)7}:'2 mL, 2Q;

UL,? U

= =1
4(1’+1)D,'2 9¢ ’ i

provided L,/L,<0. This condition is most easily veri-
fied by using the approximate form Ay = — (74+1) wya 2V
(= |2 |) of Eq. (36). When L,/L,>0, the sign of
the U’/Q; terms in ReAw is reversed and therefore the
U’/Q; term becomes stabilizing. In obtaining the »=0
result,

@ dy e . = dz €.
/o ;exp(—;z+1x2)— j; 22exp(——z+tz)
@' gy €
= ](; 5 &P (— . +zz)

-3
- f dt exp[2i(i€) 2 cosht]= Ko[ — 2 (ie) 7]
0

and e=x2/|x2| = | mL,/2ML, | K1 are employed,
where Re[ —2i(ie)12]>0 is required for convergence
of the integral and K, is a modified Bessel function of
order zero.

A comparison of (33) and (37) shows that instability
is not possible due to the U"2L,2/(r+1)v:? contribution
to ReAy because | x¢?/x,2 | <1, where

xo2 TlL,l

- (S(I'r]ﬁi?)((f+1) L. | ) (38)

and the maxzimum value of s1lns=¢1<1 for s>1.
Because of | x?/x;2 | <1, however,

U'/Q>URL2/4(r+1) 02

is to be expected so that instability due to the U’/Q;
term in (37) is possible. Comparing the remainder of

x;}
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- (37) and (33) for #=0 gives the stability condition
A " ’ 172 3/2 32
- - v, M'(A_l) <_L_> ~ge 111 <£f:> ’
-8 ST =5 Q; T m L, T L,
T2 59 34 (39)
<2 F ARy Ty
P ,j:: o g ,3* % g where (M/m)Y?~~43 is employed. In order for (39) to
My 2| B 2,3; © g be violated when | x¢?/x;? | <1 is satisfied, | L./L, | <
3 AE BSES = 2 (2rm/M)"(a;/ | L, | ) is required. In the | x¢/x;2? | <1
R f.; i i 23 limit, therefore, no instability due to the w—ws term
i g 315 ES in ¥ is possible, while the Doppler shift term k,U’x
. L S| 23sT =% can lead to instability.
£ & T F%- 5 In the | %?/2:%|>>1 limit, application of (36) for
8 - arbitrary mode number # yields
§ A [ IU'[L,,} (7rm )1/2 1 U’ L,
i N YRl T o ( el )
ARG IR 0
< = 3 ~N P <
E r-;n§§ 2 Ei* iy a provided L,/L,<0. This expression for Ay and the
= S0 g =3 $% L,/L.<0 condition can be exactly recovered by using
E ité -_% E; E é” the seemingly approximate, but, in fact, exact, form
= L% E P E{ ey Ay=—(r+1)wsa2¥ (x=1,) of (36). Once again when
4 fxé S i E L./L;>0, the contribution of the second term in Ay
- STLl e 3l § £ is stabilizing.
K| 55 E Ty Z3 Inspection of (33) shows that #=0 is the least sta-
o N oM E : E [ bilized mode, and comparison of it with (40) gives the
g - | = two stability conditions
U
b U 2(r+1)a; [2M \12 (r+1)a;
2 — (———) 68— (41)
= Q2 | L | Trm 2| L, |
<
2 - and
:E X %\ % \(_2 L T U’ 1/2 1/4 1/2
] & E 8 < S v i (@) (Z_T_IK) ~ 3t Dal (42)
é = : ;\.} = é 3 @i 7 |\L, wm ] |7 [ L]
- j_.: ;‘ % I s e where again (M/m)V*2243 is employed. Taking =1,
.gﬂ = = E iy £ E (41) and (42) show that to see these drift insta-
2 S O2 ) BEx: £ E bilities @i/ | L, | <1/136 and a/ | L, | <1/256 are re-
2 L E gl S = T quired, otherwise U’/Q;«<1 is violated. Because
3 AR BT E £ U'| L, | /2(r+1)Y%,;< 1, Eq. (42) cannot be violated
g 8oR EM e g E unless 7 is extremely large compared with one. In
g order for (41) to be satisfied when | xp*/x.2|>1 is
g also satisfied, an | L,/L, | >7m/M is required, pro-
gl vided U'/Q:<1.
Sz _ . DISCUSSION
5 f,,; E 5 If neutral injection results in U’ large enough so
& 2 5 S 3 that U’ | L. | /(+4+1)¥2,> 1, then a parallel Kelvin—-
£ g s s Helmholtz instability is excited having a growth rate
V 2 3 s 3 ~kU’a; (for r~1). Magnetic shear stabilization of
4 g3 ’é % - this instability requires U’L,/(v+1)2;< 3, so that L,
g S E S g v must be less than [3{r+1)¥2/r] | L, | for stabilization.
s § = & = 2 This is, for example, a larger amount of magnetic shear
§ Qo S N + than is presently available in tokamaks. As a result,
& A \Y = the best means of stabilizing this parallel Kelvin—
i—’ ~5 5 OIS Helmholtz instability is via a strong enough density
£ St —|3 - gradient so that U’ | L, | /(r+1)V2p;< 1.
8 S I R As U'| L, | /(z+1)Y2; decreases and becomes less
k| 8 v 4 than one, the parallel Kelvin-Helmholtz instability is
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transformed to a drift wave so that for
U'| L. | /(r+ 1)V, <1

only the much more slowly growing drift instabilities
can be excited. Two drift instabilities are possible, and
which one occurs depends upon whether

[ ao?/we? | =[U2L2/8(r+1)02]r | Lo | /(r+1) | Lo ] ]

is much less or much greater than one. For | x?/x:2 | <1,
the Doppler shift in w caused by U’ leads to an insta-
bility if U'/Q,>86[(r+1)/7]]| (L./L:)¥?| provided
| L./L, | <7¢:/30| L, |, for (M/m)¥2~43. When
| #2/%:2 | 3>1, a shift from the electron diamagnetic drift
frequency, proportional to (U’)?, results in an instabil-
ity which is stabilized if U’/Q;<68[(r+1)/7/2]X
[ei/ | L, | ] provided | L,/L, | >600 and U’/QK1, for
(M /m)" 243, If the magnetic shear is strong enough
to stabilize the usual drift wave instability [replace
URL2/4(r+1)02 by (r+1)k%? and then set U'=0
in (37)7], then these two velocity shear driven drift
wave instabilities are also stabilized. A summary of
the preceding discussion is presented in Table 1.

Taking the injected beam velocity equal to the crit-
ical velocity Un=s{(m/ M)V 22 (M /m)Ve; discussed in
the introduction, the accumulated beam injected den-
sity Ny at which the beam injected energy becomes
equal to the kinetic energy of the background plasma
ions is Ny~ (m/M)YN. From conservation of mo-
mentum, the mean plasma velocity along B, due to
the injected beam, U, is given by UIN Ui /N~
(m/M)Y6;. Consequently, using U'=U/L,, where L,
is the scale length associated with the velocity shear,
gives U’ | L, | fvii(m/M)Y8 | L,/L,|. As a result, for
| L/L, | <1, i.e., at the beam edge, or for higher in-
jected beam energies (more heating), Eq. (22) can be
violated and the parallel Kelvin—-Helmholtz instability
excited.

For the parallel Kelvin—Helmholtz instability, the
slab model results presented here are expected to be
valid in a tokamak geometry as this instability is driven
by the bulk motion of the ions and so is not expected
to be significantly affected by the relatively few trapped
particles. The drift wave instabilities, however, are
driven by a resonance of relatively few electrons with
the drift wave and because the resulting growth rates
for tokamak parameters are on the order of the elec-
tron bounce frequency, the use of a slab model is only
marginally justified.
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t=-it

Frc. 3. The contour L in the complex ¢ plane for x<0 (¢ <0).
The branch cut from ¢= —i{ is for the upper signs in (A6), while
that from ¢= +1¢ is for the lower.

APPENDIX

The differential equation (14) with ¥ given by (28)
can be solved by using the WKB solution in the region
about 2~ |vyL,/kv;| to join the solution from the
x> [ vLo/kv: | limit of V, to that of the x< | yL,/kv; |
limit.

In the x> les/kvi[ limit, the V of (14) is given
by (29), and letting

2/3 .
o ( yLW ) ((T-I-l)k'u,x _1) (A1)
kaivi(r—}-l) W’)’Ls
results in the Airy equation 92®/8p>—p®=0. In order
for ®(x—+o0)—0, only the Airy function going to
zero as ¥——+o is allowed. For x—— o, this solution
has the asymptotic form

&(— | x| )~C(x)[exp(i} | p [*—i}r)
+exp(—if | p [2+idr)], (A2)

where the explicit x variation of C(x) is not required
to carry out the matching to lowest significant order.

For the < | yL./kv; | limit the V of (14) is given
by Eq. (30). Letting

¢=(2/a;) [x+ (rvLe/Whi) ], (A3)
results in the Whittaker equation
a*® 1 «
il - - e=0
=t (G- (A4)
where
k= (r4+1)yL,/2Wkv,a;. (A5)

The solutions to Eq. (A4) are the Whittaker functions
W yic12(24¢) which have the integral representation!

W icp(£8) = —[T(Fix) /2ri](ip) =
XexplF (3i5) 1fz dt(—5)F
X[ (#/i¢) T+ exp(—1),

where the contour L is as shown in Fig. 3.
For x—— ¢, Ref~>— o so that

[1= (#/ig) Trie= 14 (xt/) 4+ + -

(A6)
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Imt

Fic. 4. The deformed
branch cut from =0 in the

Ret

& it

(a)

may be employed in (A6). For =ik not an integer or
zero,!!

[T(z) J7=(i/2x) [o d(—)~* exp(—¥)
may then be used to obtain
W i (Fi8) ~exp[ F5 (i) £in In(—§) +5 (me) 1+ - -
(A7)

for x—>— . In order for ®(x—— «)—0, Eq. (A7)
requires Re(=ix) <0 which in turn gives #+Imy>0.
Consequently, for Imy>0, Wy12(#) is the appropri-
ate solution for ®, while for Imy<<0, W_; 1(—1t) is
required. However, if the matching results in an eigen-
value ¥ having Imy>0, then because v is the only
complex quantity in (14), the complex conjugate of
v must also be an allowed eigenvalue. As a result, only
Imy>0 or Imy<0 need be considered.

Taking Imy> 0, the asymptotic behavior of W 1(3{)
depends upon whether the branch point = —i¢ of the
integral in (A6) passes to the left or right of =0 as x
passes from x<0 to x>0.22 If the branch point passes
to the left of =0, then the asymptotic form for x—- e
is the same as that for ¥——c and it is not possible
to join the x—-+4 o asymptotic form of the Whit-
taker function to (A2). Fortunately, for Imy>0,
Re[—i¢(x=0)]>0 so that the branch point {=—if
must pass to the right of {=0. In passing to the right
of t=0, this branch point at = —i{ cannot be allowed
to cross the branch cut between ¢=0 and + . Conse-
quently, it is convenient to deform the /=0 branch
cut from that shown in Fig. 3 to that of Fig. 4(b) by
first deforming it as shown in Fig. 4(a). Breaking the
contour of Fig. 3(b) up into three sections and making
the appropriate changes of variables under the integrals
in (A6), Wi .1.2(i¢) may then be written as

Wic1p(if) =— FZ(:-:) (i) * exp(—3it)
-1 _t. e —
X /Ldt(—t) (1+ ig') exp(—1)

complex ¢ plane for x>0
(¢>0) when Im v>0.

; ‘ Ret

(b)

T(ix)

+ 2mi

(=)~ exp(3i) [1—exp(—2rx) ]

. A

X /dt(—t)’f"‘ (1— .—) exp(—1), (A8)

L s
where the contour L is the same as that shown in Fig. 3
and where Im[{(x=0)]<0 is required in order for it
to be necessary to deform the contour of Fig. 3. For
x—-+, Eq. (A8) has the asymptotic form
W (i) ~expl — 3i¢ +ix Inf —kgw ]+ -+

—[1—exp(—2mx) [T (ix) /T(—ix) ]

Xexp[}it—ix Inf—xdr 4, x—+o, (A9)
In obtaining (A9), the same procedure that precedes
Eq. (A7) is employed.

To join the asymptotic forms (A2) and (A9), a

WKB solution of Eq. (14) with V given by (28) is
employed. To lowest order this WKB solution is

®=A(x) exp {‘—z— fz d'[—V(«, v) ]1/2}

1

+8) el [ ax-v(w, 1%, (a10)

where x,, is any x of the order of | vL,/kv; | and where
A and B contain the higher-order corrections in x to
the WKB solution, as well as arbitrary constants. Re-
calling | W | >>7+1, using

fz dx'[:—- 'VJII2= /” dx[-— V]1I2___ /n dx’[—— V:]llz’

Tw Zw z

where xs=W~yL,/(r+1)kv;, and taking | x| > | w | s0
that the ¥ of (29) may be used to evaluate the integral
from x to xz; the WKB solution (A10) may be joined
to (A2) provided

A ep | = [ aal=vye] =c@) explitm),

Qi Jzy

B(x) exp [— i&’dx(—V)llz] —C(x) exp(—itn).
(A11)
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Equations (A11) may then be used to write the & of
(A10) as

&=C(x) [exp (i%r— ai,- /:2 dx'(—V) 1’2)

A
-Hm(4ﬁ+ifdﬂmeﬂ.(MD
To join (A12) to (A9) for | W | >r+1,
f " da'[—V 2= / - da[ — V u2— / : dx' [~V
z 21 71

is employed, where xy=vyL,/Wkv; For |x| < |x,],
the ¥V of (30) may be employed in the integral from
%1 to %, and the resulting form of {A12) may be joined
to (A9) provided v satisfies the eigenvalue equation

T'(4x)
I'(—ix)

Ci—exp(~2m0) 1= exp {ir— 2

t

xfmw@mmmm}mm

In the limit in which the “barrier” width x;—x,=
2a: is large, | x | >>1, Eq. (A13) reproduces the v>0
form of the local result (20) within factors of (x/2)!2,
provided W~2(7+1) and W>»(r+1) are employed.
The quantity #, is the location of the pole of V, x,=
—7yL,/Wkv.. The errors in the factors of (x/2)2 are
a direct result of having to neglect such terms in V in
order to obtain an analytic expression for the eigen-
value equation. In addition, | « | >>1 results in the local
result (21) being valid when 7U’L>>8(r+1)v,.

In order to determine the effect of magnetic shear
in this | W | >>r+1 limit the eigenvalue equation (A13)
may be approximately evaluated for | x | <1. Because

'T. H. Stix, Plasma Phys. 14, 367 (1972).

*T. H. Stix, Phys. Fluids (to be published).

*N. D’Angelo, Phys. Fluids 8, 1748 (1965).

‘M. Dobrowolny, Phys. Fluids 15, 2263 (1972).

*C. G. Smith and S. Von Goeler, Phys. Fluids 11, 2665 (1968).

€J. A. Rome and R. J. Briggs, Phys. Fluids 15, 796 (1972).

’B. D. Fried and S. D. Conte, The Plasma Dispersion
Function (Academic, New York, 1961), define
Z (n) = w~'D5d gexp(~ £/ (& — m) for Imn > 0.

M. N. Rosenbluth and C. §. Liu, Phys. Fluids 15, 1801 (1972).
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| /200 | =2 | W/ (r+1) | D1 and | ay/20 | =1/ | W | K1,
[ de[— V] in (A13) may be evaluated to lowest sig-
nificant order by simply using the V of (29) and inte-
grating from O to s,

=2 2W+L, 2rU'L,

7 g TN - .

¢ f,l VS S D homs ~ 3G Do,
Using the preceding result, exp(—2w«)=1—2m«,
I'(ix)Xd=1/ik, and exp(i2« Ink)=1, Eq. (A13) re-
duces to
w(r+1)Ley* (_1r . UL, )
Baml’ P\ T e (AW

Writing y= | v | exp(#}), using exp (4 =42x) = exp (3¢),
and requiring stability (¢>w/2) for U’=0 gives

2| = (Jk_a«'i’)z (1r_(7;-l_-_1_)31_)

2rk=

r(r+1) UL,
and
5% UL,
YT T Srw (419

For stability, y>#/2 is required. Consequently, the
condition for shear stabilization in the | W |>r+1
limit is as shown in (31). In finding (31), no restric-
tions on = other than | W/7 | >>1 are required. From
(A14), 2r [« | =1, so that exp(—2rx)~1—2rk and
exp(i2« Ink)~1 are not strictly valid; however, such
inaccuracies only slightly change the constant on the
right-hand side of Eq. (31).

Finally, note that for ¥ real and >0(y=0), Eqs.
(A15) give y=rkU’a;/4(r+1) which should be com-
pared with the local result (21). Note in particular
that the r <1 restriction must be recovered for y<0 or
7U'Ly/ (r+1)9:>6, while for yom/2, | W/(r+1) | >1
is satisfied independent of r.
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